Estimating the contribution of lightning to microbial evolution: Guidance from the Drake equation
Comment on “Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer” by Tadej Kotnik

James C. Weaver *

Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA

Received 30 July 2013; accepted 30 July 2013
Available online 2 August 2013
Communicated by E. Di Mauro

Keywords: Evolution; Lightning; Gene transfer; Electroporation; Drake equation; Prokaryote

The possibility that lightning-mediated horizontal gene transfer (HGT) has contributed to evolution has been raised before [1–5], but not vigorously pursued. Kotnik now thoughtfully argues for doing so [6]. In addition to applauding his presentation, I suggest that estimating the significance of lightning’s contribution to HGT in microbial evolution is fundamentally a quantitative issue. For this reason aspects of electroporation (EP) and the Drake equation are briefly discussed.

Fig. 1 is based on experimental exposure conditions, mainly for mammalian cells, and indicates both Supra-EP and Conventional EP [7]. The former involves creation of about 100-fold more pores during nsPEF (nanosecond pulsed electric fields) than conventional EP (pulse duration greater than about 1 µs), but nsPEF pores are mostly small. Lightning-induced electric fields in the sea and soil lie within this strength-duration space, with smaller bacteria requiring ten-fold larger strengths for pulse durations greater than ~ 1 µs.

The most relevant feature of lightning is its generation of an electric current density, \(J\), in sea or soil. The spatially distributed \(J\) leads to electric fields that can electroporate prokaryote membranes, with these field pulse strengths, durations and repetitions defining three hemispherical zones [5,6]: lethal, HGT possible and no EP effect. Here discussion focuses on DNA delivery by electroporation without electrofusion. This seems to be the more general possibility, requiring neither bacterial protoplasts nor membrane contact.
Experiments with laboratory electric fields have yielded several positive results [3–5]. While encouraging, future experiments could use lightning current waveforms [8] for creating electroporating pulses, initially assuming that lightning has not changed significantly over evolutionary time.

The first reports of EP are usually associated with Stämpfli and co-workers, for both irreversible [9] and reversible EP [10], but Rubinsky notes there are earlier hints of EP [11], one in 1754. As now used or studied EP field strengths span three orders of magnitude (0.1 to 100 kV/cm) and nine orders of duration (1 ns to 1 s).

Actual waveforms and multiple lightning strokes may be important. Consider electroporation-mediated HGT between two living cells. Within sea water a solubilized charged molecule moves electrophoretically without significant steric hindrance or temporary binding/unbinding to particles. Two in vitro experiments support this process, with solubilized DNA moving electrophoretically within the extracellular medium into electroporated cells directly through pores [12,13]. Within soil, however, small particles and tethered macromolecules can be present, so that released DNA is more likely to bind, perhaps temporarily, before reaching a recipient cell [3]. A related situation occurs in widely used laboratory protocols, wherein DNA is allowed to bind to the membrane before pulsing, and afterward DNA moves slowly into the cell [14–16]. Dead bacteria may provide a plasmid reservoir [5]. In soil DNA released from dead cells may remain localized until degraded, but in the sea DNA would spread by diffusion and convection. Lightning-mediated HGT requirements may therefore differ for sea and soil.

In addition to basic biophysical mechanisms of EP and DNA transport, large scale considerations should include global lightning, and the evolutionary time frame when electrical HGT would have been important. Specifically, an approach that is guided by the Drake equation may help identify the processes important to lightning-mediated HGT.

This equation was proposed for a rather different evolutionary problem: Estimating the present number of extra-terrestrial civilizations with communication capability relevant to a search for extra-terrestrial intelligence (SETI) [17–22].

As emphasized recently by Dominik and Zarnecki [22] ‘Our ignorance is most famously quantified by the Drake equation

\[N = R_* f_p n_p f_l f_i f_e L. \] \hspace{1cm} (1)

Eq. (1) ‘‘...describes the number of civilizations, \(N \), that are detectable by means of electromagnetic emissions (more particularly, radio signals) as a product of various factors. \(R_* \) is the formation rate of suitable stars, \(f_p \) is the fraction with planetary systems, \(n_p \) is the number of planets per such system with conditions suitable for life, \(f_l \) is the fraction on which life actually develops, \(f_i \) is the fraction life-bearing planets on which intelligent life emerges, \(f_e \) is the fraction of emerged civilizations that develop technologies for propagating detectable signals, and \(L \) is the time span over which these civilizations disseminate such signals’’ [22].

This estimate is basically an average rate, \(R_* \), a chain of probabilities (fractions) and one number that can be multiplied to create a single parameter, \(f_e \) [18], and a lifetime (\(L \)). It is often emphasized that the Drake equation is a way of noting what parameters are important, and this highlights the source of uncertainties. Consistent with major uncertainty, predicted values of \(N \) vary greatly [17–22].

Fig. 1. Approximate map of cell electroporation pulse strength-duration space.
For lightning-mediated HGT a similar predicted quantity could be the total number of lightning-mediated HGT events deemed significant during an appropriate evolutionary time frame. Quantitative estimation for the significance of lightning to HGT over evolutionary times has similar large uncertainties. For example, consider an estimate

\[
N_{\text{HGT}} = R_{\text{LST}}n_{\text{BAC}}V_{\text{EPZ}}f_{\text{EPT}}f_{\text{SIG}}L_{\text{HGT}}.
\]

Here \(N_{\text{HGT}}\) = total number of evolutionarily significantly changes due to lightning, \(R_{\text{LST}} = 10^{18}\) flashes/Gyr is the rate of lightning strokes on earth \[23\], \(n_{\text{BAC}} = 10^{15}\) bacteria/m3 is the bacterial concentration (number density) in soil \[24\], \(V_{\text{EPZ}} = 1\ m^3\) is the volume of the zone with successful EP, \(f_{\text{EPT}} = 10^{-2}\) is the fraction of successfully electroporated bacteria, and \(f_{\text{SIG}} = 1\) is a test value for the fraction of porated cells that experience evolutionarily significant HGT. Finally, note that \(L_{\text{HGT}} = 4\ Gyr\) is the time over which evolutionarily significant changes were created (an accumulation time, not a lifetime). Using the test value of one for \(f_{\text{SIG}}\) gives \(N_{\text{HGT}} = 10^{31}\), a huge number. This shows where a lot of uncertainty resides. While this probability appears very difficult to estimate in detail, we seem drawn to the conclusion that \(f_{\text{SIG}}\) has to be extremely small for only a few significant HGTs to have occurred.

Concluding with a related example, suppose \(N_{\text{HGT}} = 10^{6}\). Then \(f_{\text{SIG}}\) would still need to be small, in this case \(10^{-25}\). Accordingly, unless one or more of the parameters are very different from what is assumed, Eq. (2) is consistent with significant HGT having occurred due to lightning.

Acknowledgements

I thank Peter H. Ulmschneider for important suggestions, and P. Thomas Vernier for critical comments and valuable microbiological insights. Supported by NIH grant GM063857.

References

